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ABSTRACT 

This paper extends a previous simulation study (1,  2)  of the 
effect of higher order probe modes when the spherical 
numerical software uses the orthogonality approach to solve 
for the spherical modes of the antenna under test (AUT).  In 
this commonly used approach, the probe is assumed to have 
only modes for µ = ±1, and if the probe has higher order 
modes, errors will be present in the calculated AUT 
spherical coefficients and the resulting far-field parameters.  
In the previous studies, a computer simulation was 
developed to calculate the output response for an arbitrary 
AUT/probe combination when the probe is placed at 
arbitrary locations on the measurement sphere.  The planar 
transmission equation was used to calculate the probe 
response using the plane wave spectra for actual AUTs and 
probes derived from either planar or spherical near-field 
measurements.  The positions and orientations of the AUT 
and probe were specified by a combination of rotations of 
the antenna’s spectra and the x, y, z position of the probe 
used in the transmission equation.  The simulation was 
carried out for rectangular Open Ended Waveguide 
(OEWG) probes using all of the higher order modes and also 
for the same probe where only the µ = ±1 modes were used 
to calculate the probe patterns.  The parameter that was 
used to estimate the error in the measured near-field data 
was the RMS combination of the complex differences 
between near-field polarization curves over a χ rotation span 
of 100º.   This RMS combination represented the estimated 
error signal level relative to the peak near-field amplitude.  
Using two different AUTs, different measurement radii and 
a sequence of θ-positions on the measurement sphere, the 
error signal levels were between -35 and -80 dB and the 
initial conclusion was that the effect of the higher order 
modes on typical measurements using OEWG probes would 
be smaller than other typical measurement errors and 
therefore have little practical effect on far-field results. 
 
In this phase of the study the goal was to develop general 
guidelines to predict the error signal level for a given 
AUT/probe/measurement radius combination.  The same 
simulation software was used in this study with the following 
changes and additions.  Rather than use all of the points in 
the polarization curves to derive an RMS error signal level, 
only the χ-rotation angles of 0º and 90º were used since these 
are the only two probe rotation angles used in a typical 
spherical near-field measurement. In addition to deriving 
the error estimates for specific spherical angles and 
measurement radii, complete sets of near-field data were 

derived for some cases, the far-fields calculated and 
compared to derive estimates of far-field error levels.   
 
The results of these simulations are presented and guidelines 
developed to aid in the choice of spherical near-field probes 
and measurement radii for typical antennas. 
   
  
Keywords: near-field, measurements, near-field probe, 
spherical, spherical mode analysis.  

1.0 Introduction 

The spherical near-field theory is based on the 
transmission equation derived by Jensen (3) – (4) and 
further developed by Wacker (5) where the antenna under 
test and the probe are described by spherical mode 
coefficients of basis functions that are solutions of 
Maxwell's equations for a spherical coordinate system.  In 
principle, the spherical transmission equation is valid for 
any arbitrary test antenna and probe combination at any 
separation distance between the spherical coordinate 
system origin and the probe which is outside of the 
minimum sphere that will completely enclose the antenna 
under test.  The transmission equation is, 
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Where aW  is the amplitude and phase data measured by 
the probe at the radius a and the position defined by the 
spherical coordinates  and .    is the rotation angle of 

the probe about its z-axis.  The P’s are the spherical mode 
coefficients for the probe and the Q’s are the 
corresponding spherical mode coefficients for the antenna 
under test (AUT).  Mathematical orthogonality is used to 
solve the transmission equation in order to obtain the 
coupling product within the brackets of (1).  The result is 
shown in (2). 
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In order to perform the integration for the three angular 
variables θ,  and  using incrementally measured data, 

the data point spacing for all three angles must satisfy the 
sampling criteria for each variable.   Theoretical 
guidelines are available (6) to specify the angular spacing 
in θ and   in terms of the radius of the minimum sphere 
that will completely enclose the antenna.  Experimental 
tests on a given test antenna and probe can also be carried 
out to verify these guidelines by taking closely spaced 
data and comparing the far field pattern results when the 
data point spacing is increased.  For an arbitrary probe 
and measurement radius, satisfying the sampling criteria 
for the   variable could require measurements at small 
increments in   and numerical integration of the data in 
.  The required multiple measurements over the complete 
sphere for small increments in   would be very time-
consuming and the numerical integration could be both 
time-consuming and inaccurate.  To solve this problem, 
Wacker (5) proposed using a special probe that would 
have a symmetry in its far field pattern such that the 
spherical mode coefficients for the probe would be zero 
for all   values except 1   .  Such probes are referred to 
as first-order probes. When the probe satisfies this 
condition, measurements are only required for χ = 0º and 
90º and numerical integration of the data for the   
variable is not required.  This greatly reduces the 
measurement time and results in a fast, efficient and 
accurate numerical technique to perform the calculations 
defined in (2).  The vast majority of the software used in 
processing spherical near-field data uses this numerical 
technique and the assumption that the probe satisfies the

1    requirement is implicit in using this software.  
Probes can be constructed which satisfy this requirement 
to a very high degree by using a circularly symmetric 
probe aperture and a precise transition from rectangular to 
circular waveguide.  The spherical mode coefficients for 

1    of carefully constructed probes are typically at 
least 40 dB below the first order modes.  But such special 
probes increase the cost of the measurement system and 
the probes may have a smaller bandwidth than similar 
rectangular open ended waveguide probes (OEWG).  It 
has been established that if the measurement radius is 
large enough, probes such as the OEWG can be used for 
spherical near-field measurements and the effect of their 
higher order modes will be negligible and the efficient 
data processing algorithms can be used without causing a 
significant error in the results.  There is only limited 
information (7 – 11) on how large the radius must be and 
what the residual effects of the higher-order modes are.  
This study was undertaken to try and answer some of 

those questions using a computer simulation technique 
that should be a very sensitive test of the effect of higher 
order probes. 

2.0 Simulation Concept 

The simulation has been described in detail in previous 
papers (1, 2) and will be summarized here.   

Previously measured spherical near-field data for both the 
antenna under test (AUT) and a rectangular open ended 
waveguide (OEWG) probe is used to calculate the far-
field patterns of both antennas over a full sphere.  The 
AUT far-field pattern is then rotated mathematically 
about the Z-axis to simulate a φ-rotation and about the Y-
axis to simulate a θ-rotation. The transmitting plane wave 
spectrum over the forward hemisphere on a k-space,
( , )x yk k  grid is then derived from the rotated pattern.  

This plane-wave spectrum represents the AUT rotated in 
φ and θ as it is in a spherical near-field measurement.   

The far-field probe pattern is rotated about its Z-axis to 
simulate a χ-rotation and its receiving plane wave 
spectrum calculated on the same k-space grid as the AUT.  
The calculation of a receiving plane-wave spectrum for 
the rotated OEWG probe is repeated but in this case, the 
spherical modes for 1   are set to zero in the 

calculation of its far-field pattern. The two spectra 
represent respectively a higher order probe and a first 
order probe with otherwise identical patterns and 
polarization.  Figures 1 and 2 show the spherical mode 
amplitude plots for s=1 for the two probes. 

  

For the remaining steps in the simulation a computer 
program was developed to use the rotated plane-wave 
spectra of the AUT and one of the probes to calculate the 
output of the probe for a specified x, y, z position of the 
probe.   When x = y = 0, the probe is at the pole of the 
measurement sphere and the AUT is positioned at the 
origin of the sphere or along the Z-axis. Offset positions 
of the AUT can be simulated by selecting non-zero values 
for x and y or using a Z-offset when calculating the AUT 

Figure 1-Spherical mode coefficient 
amplitudes for s=1 for higher-order 
probe with all µ modes retained. 

Figure 2-Spherical mode coefficient 
amplitudes for s=1 for first-order 
probe with only µ = +1, -1 modes. 
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far-field pattern.  The z-position of the probe defines the 
measurement radius. The probe output is produced using 
the planar near-field transmission equation (7)
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The rotation angles , , and   have been added as 

variables to the probe output, the AUT spectrum and the 
probe receiving spectrum to show that the planar 
transmission equation will be used to produce simulated 
spherical near-field data at arbitrary and  positions on 

the measurement sphere with arbitrary χ rotations of the 
probe. The planar transmission equation is used for the 
simulation rather than the spherical transmission equation 
since both are equally valid and accurate expressions for 
the transmission between a test antenna and a probe at 
any arbitrary near-field position and relative orientation.  
The planar equation is much easier to calculate 
numerically and can be used without modification for 
both first-order and higher-order probes. 
 
The goal of the simulation is to derive general guidelines 
for the effect of higher order probes in spherical near-field 
measurements by comparing some near-field or far-field 
parameter obtained with the first order and higher order 
probes.  It is not practical to simulate all the possible 
combinations of AUT, probe, measurement radius, AUT 
offset, frequency, AUT and probe rotations and density of 
points used in the numerical calculations.  The 
combinations must be reduced to a manageable size and 
the focus should be on the parameters that are likely to 
have an effect on far-field results.  Since the OEWG 
probe is widely used, it was chosen as the probe for this 
initial study and all the simulations are for this probe.  
Other probes with potentially larger amplitudes for their 
higher order modes can be studied in the future.  Two 
antennas were selected for simulation.  One is a narrow 
beam slotted waveguide array with a gain of 35 dB.  The 
other is a pyramidal standard gain horn (SGH) with a gain 
of 21 dB.  It is not likely that the higher order mode effect 
is highly sensitive to the AUT type, and these two 
antennas represent typical types and different gains.  The 
frequency is 9.375 GHz, the AUT operating frequency, 

and both AUTs and the probes are linearly polarized with 
on-axis axial ratios of 40 dB or more.  It is known that the 
effect of the higher order modes is reduced as the 
measurement radius is increased and it is highly desirable 
to perform simulations for a large enough range of radii to 
derive a guideline for this parameter.  It is also desirable 
to determine the effect on the far-field results when the 
higher order probe is used  and to do this; a hemisphere of 
near-field data must be simulated and then transformed to 
the far-field.   A hemisphere of near-field data for the 
slotted array has over 50,000 data points for each of the 
two χ angles and this requires evaluating (4) on the order 
of 100,000 times.  This cannot be done for many 
measurement radii, and so a two part approach was used. 
 
 In the first approach, complete hemisphere near-field 
data sets for the first order and higher order OEWG 
probes were generated for the slotted array at 
measurement radii of one and four times the minimum 
radius sphere, also referred to as the maximum radial 
extent (MRE).  These were then transformed to the far-
field and both the near-field data and the far-field results 
for the two probes compared.  In the second approach, a 
few and  combinations were selected that would 

represent different amplitude, phase and polarization 
properties on the measurement sphere.   At these 
locations, the probe output was calculated using (4) for χ 
= 0º and 90º as a function of the radius of the 
measurement sphere.  These curves for the first order and 
high order probe were then compared and error signal 
levels as a function of radius derived.   

3.0 Complete Near-Field Simulation 

Figures 3 and 4 show contour plots of the simulated θ-
component (χ=0) and φ-component (χ=90) amplitudes for 
a measurement radius of one MRE.  

 
Figure 3 Simulated spherical near-field amplitude for radius 
= 1 MRE, (χ=0).  Contour levels are -1, -3, -6, -10, -20, -30, -
40, -50.  Red = higher order probe, Black = first order 
probe. 
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Figure 4 Simulated spherical near-field amplitude for radius 
= 1 MRE, (χ=90).  Red = higher order probe, Black = first 
order probe.  Small rectangles show the (θ,φ) coordinates 
used for the second part of the simulation 
Section 4. 

Using the simulated amplitude and phase data, the 
amplitude of the complex difference between the near
fields for the two probes was calculated at each point and 
plotted relative to the peak near-field amplitude
in Figure 5.  Using the complex difference, rathe
just the amplitude difference, includes the higher order 
mode’s effect on both the near-field amplitude and phase 
and represents the upper bound effect.  
 

 
There are some regions where the difference level is as 
high as -35 dB and other regions where it is as low as 
to -70 dB. With this type of variation, the effect on the 
far-field should be less than the peak and this is 
confirmed when the far-field patterns are computed for 
the two probes and the amplitude difference converted to 
an error signal level.  The complex difference is not used 
in the far-field since the far-field phase is generally not 
important for most antenna measurements
shows the far-field amplitude pattern and the error signal 
level difference between the two probes for the 1 MRE 
radius. 
 
The peak error of -41dB occurs in the region of the main 
beam and the error level in the sidelobe region is below 
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Figure 5 Amplitude of the complex difference relative 
to the peak near-field amplitude for (χ=0)  and (χ=90)  
at measurement radius = 1 MRE. 
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= 1 MRE, (χ=90).  Red = higher order probe, Black = first 
Small rectangles show the (θ,φ) coordinates 

used for the second part of the simulation to be discussed in 

lated amplitude and phase data, the 
amplitude of the complex difference between the near-
fields for the two probes was calculated at each point and 

field amplitude as shown 
Using the complex difference, rather than 

just the amplitude difference, includes the higher order 
field amplitude and phase 

and represents the upper bound effect.   

 

There are some regions where the difference level is as 
35 dB and other regions where it is as low as -60 

70 dB. With this type of variation, the effect on the 
field should be less than the peak and this is 

field patterns are computed for 
ifference converted to 

an error signal level.  The complex difference is not used 
field phase is generally not 

for most antenna measurements.  Figure 6 
field amplitude pattern and the error signal 

l difference between the two probes for the 1 MRE 

41dB occurs in the region of the main 
beam and the error level in the sidelobe region is below --

-60 dB.  This character of the effects of probe correction 
errors showing up in the main beam region is consistent 
with other error analysis studies.  If the probe pattern used 
for spherical processing is changed or the probe 
correction is neglected, it is the ma
far-field that is affected.   
 

 
The simulation of a complete near
the far-field was also carried out for a measurement radius 
of 4 MRE and the results are shown in Figures 
The maximum far-field amplitude
was -53 dB. 
 

 

Figure 8 Far-field error relative to the peak of the main 
beam due to the use of a higher order probe for 4 MRE 
measurement radius.  Peak difference = 

35 40 45 50

Figure 7 Amplitude of the complex difference relative 
to the peak near-field amplitude for (χ=0)  and (χ=90)  
at measurement radius = 4 MRE.

Figure 6 Far-field contour pattern for slotted array 
and far-field error relative to the peak of the main 
beam due to the use of a higher order probe for 1 
MRE measurement radius. 

 
Amplitude of the complex difference relative 

field amplitude for (χ=0)  and (χ=90)  

This character of the effects of probe correction 
errors showing up in the main beam region is consistent 
with other error analysis studies.  If the probe pattern used 
for spherical processing is changed or the probe 
correction is neglected, it is the main beam region of the 

  

The simulation of a complete near-field and processing to 
field was also carried out for a measurement radius 

and the results are shown in Figures 7 and 8.  
amplitude difference for this case 
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4.0 Simulations at Representative (θ,φ) 
Positions Versus Radius 

In the second 
approach used in 
the simulation, a 
few (θ,φ) points on 
the measurement 
sphere were 
selected to 
represent different 
amplitude levels, 
field polarizations 
and field 
complexity.  Some 
of these points are 
represented by the 
rectangles on the 
contour pattern in 
Figure 4 and 

additional points at θ = 60º were also used.  Most of the 
simulation used the φ angles of 0º and 45º, χ angles of 0º 
and 90º with the θ angles of 0º, 20º, 40º and 60º. Figure 9 
shows a schematic representation of the rotations of the 
AUT in φ and the probe in χ that were applied to the 
patterns to produce simulated spherical data.  The AUT 
was also rotated about its Y-axis to simulate the θ position 
on the sphere.  The Z-value used in (4) specifies the 
radius of the measurement sphere. 
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Figure 10 Simulated probe output for a first order and 
higher order probe at selected spherical coordinates. 

Figure 10 shows plots of the simulated probe outputs as a 
function of Z for the case where φ=45º and χ =90º and 
illustrates the large variations in amplitude level, dynamic 
range and fine structure of the simulated spherical data.   
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Figure 11 Amplitude of the complex difference between 
near-field measured with a first order and higher order 
OEWG probe. 

The small differences between the first order and higher 
order probes cannot be resolved in these plots and the 
phase is not included, and so the complex difference is 
calculated at each point as shown in Figure 11.  
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Figure 12 Averages of the complex differences for selected points on 
the measurement sphere for the array antenna. 

The detailed shapes of the difference curves are not 
important in using them to predict the effect of the higher 
order probe and so the curves are averaged over the θ 
angles to produce a smother curve that is more useful.  
The average curve has been added to Figure 10 to 
illustrate the process in going from specific points on the 
measurement sphere to an estimate of the average effect 
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Figure 9 AUT and probe 
rotations schematic. 



over the full sphere.  The same averaging process was 
used for the other three (φ,χ) combinations illustrated in 
Figure 8 to produce a graphical summary of the 
simulation results for the second approach shown in 
Figure 12. 
   
The same analysis described above was applied using the 
Standard Gain Horn (SGH) as the AUT and the average 
curves are shown in Figure 13. 
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Figure 13 Averages of the complex differences for selected 
points on the measurement sphere for the SGH antenna. 

5.0 Conclusions 
 The use of the planar transmission equation to simulate 
near-field data on a spherical surface, and potentially 
other surfaces, has been demonstrated and shown to be a 
powerful tool for analyzing near-field measurements.  
Independent algorithms using different software were 
developed by the two authors and the very close 
agreement in the results substantiates the method and the 
implementations.   
 
The effect of the higher order mode OEWG probe 
compared to an ideal first order probe decreases with 
distance as expected.  This is also an indication of 
reliability of simulations.   The results show that for radii 
of 2*MRE, the differences in the near-field and far-field 
are on the order of -50 dB below the peak amplitudes.  
For larger measurement radii, the differences are below    
-60 dB.  
 
The complex differences in the near-field are a good 
predictor of the far-field differences, so the simulation at 
representative angles can be used to analyze other 
AUT/probe/frequency combinations without the need to 
produce the full near-field and compare the far-fields.   

The difference levels are not highly sensitive to the AUT 
characteristics.  They are slightly lower for the broad 
beam antenna but the results can probably be applied to a 
wide range of antenna types. 
   
The primary effect of the higher order probe on the far-
field pattern is in the main beam region and the side lobes 
are relatively unaffected.  This is consistent with the 
general character of probe correction effects in spherical 
near-field measurements.   
 
The maximum differences in the peak near-field 
amplitudes for the two probes was on the order of 0.02 dB 
and coupled with the observed far-field differences in the 
main beam region of -53 dB for the 4*MRE radius, any 
effect on far-field gain should be on the order of 
hundredths of a dB.   
 
Future work will include extending the study to examine 
the effects of broadband probes such as open boundary 
dual ridged probes.   
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